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fluorescens strains (the type strain and two strains originally isolated from a dairy
processing plant—D3-348 and D3-350)were used to form turbulent and laminar flow-generated biofilms under
laboratorial conditions usingflowcell reactorswith stainless steel substrata. TheD3-348 andD3-350 strainswere
also used to form dual biofilms. Biofilm phenotypic characteristics, such as respiratory activity, total and
culturable cells, biomass, total and matrix proteins and polysaccharides were compared. Biofilm mechanical
stability, as a major feature involved in biofilm persistence, was also assessed using a rotating device system. The
results indicate that hydrodynamic conditions have a remarkable impact on biofilm phenotype. Turbulent
biofilmsweremore active, hadmoremassper adhesion surface area, a higher numberof total and culturable cells,
a higher amount of total proteins per gram of biofilm, similar matrix proteins and identical (D3-348 and D3-350
single and dual biofilms) or smaller (type strain) total and matrix polysaccharides content than their laminar
counterparts. Biofilms formed by the type strain revealed a considerable higher amount of total and culturable
cells and a higher amount of total proteins (turbulent biofilms) and total andmatrix polysaccharides per gram of
biofilm than single and dual biofilms formed by the other strains. Mechanical stability assays disclosed that
biofilms formed by both type and D3-348 strains had the highest resistance to removal when exposed to
mechanical stress. Dual strain biofilms population analysis revealed an apparent co-existence, evidencing neutral
interactions. The overall results provided useful information regarding a broad spectrum of P. fluorescens biofilm
phenotypic parameters, which can contribute to control and model biofilm processes in food industry.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Microbial adhesion to abiotic surfaces and the consequent biofilm
formation has been documented in many different environments
(Marshall,1994; Flint et al.,1997). Biofilms constitute a protectedmode
of growth that allowsmicroorganisms to survival in hostile conditions,
being their phenotype significantly different from their planktonic
counterparts. Differences are encounteredmainly in their growth rate,
biochemical composition and increased resistance to chemical anti-
microbials (Cloete, 2003; Davies, 2003; Lewis, 2007). In food industry,
biofilms may be a source of recalcitrant contaminations, causing food
spoilage and are possible sources of public health problems such as
outbreaks of foodborne pathogens (Lapidot et al., 2006; Gandhi and
Chikindas, 2007). Members of the Pseudomonas genus are amongst the
most diversified bacterial species in the environment and are known to
be good biofilm producers (Wiedmann et al., 2000; Dogan and Boor,
mical Engineering, Faculty of
s/n, 4200-465 Porto, Portugal.
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2003; Simões et al., 2005a; Olofsson et al., 2007). Particularly,
P. fluorescens is a widespread bacteria in many environments, namely
in dairy processing facilities, due to their short generation time, the
resistance to heat treatments (Wiedmann et al., 2000; Dogan and Boor,
2003) and the ability to formbiofilms (Pereira andVieira, 2001; Simões
et al., 2005b). Such characteristics provide these bacteria, especially
when entrapped in biofilms, the priceless capacity to form a niche,
where pathogenic microorganisms can survive.

Despite the unquestionable importance of biofilms inmicrobial life
style and their effects on human beings, our present knowledge about
the physiology and behavior of sessile communities is still limited
(Simões et al., 2007a). A representative biofilm characterization is
essential to the development of reliable methods for eliminating
specific sources of bacterial contamination associated with biofilms
(Xavier et al., 2005). As some industrial processes are flow dependent,
it is expected that biofilms formed in such equipments are affected by
the hydrodynamic conditions (Melo and Vieira, 1999).

Biofilm physiological changes induced by the hydrodynamic condi-
tions have been already studied, being focused basically on single strain
studies and on the characterization of biofilm morphology (thickness,
surface coverage, density, viscoelasticity), growth kinetics and mass
transfer events (Stoodley et al.,1999; Pereira et al., 2002; Purevdorj et al.,
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2002; Rupp et al., 2005; Venugopalan et al., 2005). This study provides
new data on turbulent and laminar flow-generated P. fluorescens biofilm
phenotype, introducing also the significance of the strain variation
phenomenon on single and dual strain sessile communities. In fact, in
addition to the influence of operational parameters, the microbiological
diversity found in biofilms formed in industrial equipment may sig-
nificantly influence its own formation and behavior. Experiments in
laboratory conditions using pure cultures, with well-known character-
istics, contrastwith real-world environments (Fuxet al., 2005). In nature,
most bacteria do not exist as pure cultures. Significant proportions of
microorganisms are often associated as complex multi-species biofilms,
performing community level processes (Møller et al., 1998). Moreover
and plausibly, it appears that no bacterial strain can truly represent its
own species. Microbial diversity can provide a reservoir of strains with
differentphysiological traits that benefits theperformanceand resilience
of the best-adapted strain alone (von Canstein et al., 2002). There are
many studies showing intraspecific variation in biofilm formation for
bacteria able to persist in food industry (Chae and Schraft, 2000;
Norwood and Gilmour, 2001; Djordjevic et al., 2002; Ryu et al., 2004;
KimandWei, 2007).However, the literature is scarceon the combinatory
effects of changing environmental conditions, such as the flow regime,
and strain variation on biofilm formation. Detailed research on this
phenomenon can enhance understanding of the process and accurate
quantitative description of complex biofilm systems.

The main goals of this study were to: provide an extensive quanti-
tative phenotypic characterization of P. fluorescens biofilms formed
under distinct hydrodynamic conditions, using three different strains
(type,D3-348 andD3-350 strains); compare thephenotypeof single and
dual strain biofilms formed by the D3-348 and D3-350 strains and
characterize their interactions in dual biofilms; assess the mechanical
stability of biofilms formedby the differentP. fluorescens strains as single
and dual strain biofilms.

2. Materials and methods

2.1. Bacteria

Three Pseudomonas fluorescens strains were used throughout this
work:

The type strain (13525) purchased from the American Type Culture
Collection, used for monoculture studies.

The D3-348 (protease negative) and D3-350 (protease positive),
two strains isolated from an overhead pipe filler in a dairy processing
plant (Dogan and Boor, 2003) and kindly provided by Prof. K. J. Boor
(Department of Food Science, Cornell University, Ithaca, N.Y.). Biofilm
studies were performed with the D3-348 and D3-350 strains as
monoculture and co-culture.

The bacteriawere preserved in cryovials (Nalgene, USA) at −80±2 °C
and the growth conditions were 27±1 °C, pH 7.0 (0.02 M phosphate
buffer— KH2PO4; Na2HPO4), and 5 g/l glucose, 1.25 g/l yeast extract and
2.5 g/l peptone as nutrients. All the media components were purchased
from Merck (VWR, Portugal).

The bacteria were transferred no more than 3 times from the
original bacterial stock in order to bacteria maintain their wild type
biofilm forming characteristics. The experimental conditions used in
this study did not represent the actual industrial setting from which
the D3-348 and D3-350 strains were found. Nevertheless, with the
tested experimental conditions the three strains had similar growth
rates (Simões, 2005).

2.2. Flow cell reactors system

A continuous pure culture of each P. fluorescenswas grown in a 0.5 l
glass chemostat (Quickfit, MAF4/41, England), at 27 °C, aerated (air flow
rate=0.425 l/min) and agitated with a magnetic stirrer (Heidolph Mr
3001, Germany). The reactor was continuously fed (Ismatec Reglo,
Germany)with10ml/hof sterilemediumcontaining5g/l glucose, 2.5 g/l
peptone and 1.25 g/l yeast extract in 0.02Mphosphate buffer pH7.0. The
0.5 l chemostat was used to continuously inoculate (10 ml/h) a 3.5 l
polymethyl methacrylate (Perspex) reactor which was also aerated (air
flow rate=0.243 l/min) and agitatedwith amagnetic stirrer. This reactor
was fed with a diluted nutrient medium consisting of 0.05 g/l glucose,
0.025g/l peptoneand0.0125g/l yeast extract in 0.02Mphosphate buffer
(pH7), at aflow rate of 1.7 l/h,which supported a bacterial cell density of
approximately 6×107 cells/ml. This diluted bacterial suspension,
obtained in the 3.5 l reactor, was pumped up (Eheim Typ 1060 and
Eheim Typ 1048 pumps), passing through two parallel flow cell reactors
and back to the reactor (Fig. 1).

A flow cell reactor system, described by Pereira et al. (2002), was
used as the device for biofilm formation. This device offers a simple
approach to study and characterize biofilms in a well-controlled, real-
time and reproducible manner (Fig. 1). It consists of a semicircular
Perspex duct (1.6×10−2 m of diameter and 4.5×10−1 m of length,
corresponding to a hydraulic equivalent diameter of 9.78×10−3 m)
with 10 apertures on its flat wall, to suitably fit several removable
rectangular pieces of Perspex, which had glued to one of its faces
pieces of stainless steel (ASI 316 — 1.75×10−2 m×1.25×10−2 m).
Biofilmswere formed on thosemetal slides whose upper faces were in
contact with the bacterial suspension circulating through the flow cell
reactor. Each of the rectangular pieces can be removed separately
without disturbing the biofilm formed on the others and without
stopping the flow. This was possible because outlet ports were
disposed on the round face of the flow cell between each of the two
adjacent removable pieces of Perspex that allowed the diversion of the
circulating flow from the point where the reactor was opened. Two
parallel similar flow cell reactors were used simultaneously in such a
way that biofilms were formed under turbulent (Reynolds number —
Re=5200, u=0.532 m/s) and laminar (Re=2000, u=0.204 m/s)
conditions respectively, in each flow cell. The biofilms were allowed
to grow for 7 days to ensure that steady-state biofilms were used in
every experiment (Pereira et al., 2002).

In the case of the dual biofilms, two independent 0.5 l glass chemo-
stats were used (one for each strain, D3-348 and D3-350). The 3.5 l
reactorwas inoculated simultaneouslywith the two strains and fedwith
diluted nutrient medium at a flow rate two times higher (3.4 l/h) than
the one used for biofilm formation by a single strain, in order to obtain
the adequate dilution rate and similar to the single strain biofilm
situation. The experiments were repeated at three different occasions
for every condition tested.

2.3. Biofilm sampling

The biofilm that covered the metal slides was removed using a
stainless steel scraper, resuspended into 10 ml of buffer composed by
2 mM Na3PO4, 2 mM NaH2PO4, 9 mM NaCl and 1 mM KCl, pH 7 and
homogenised by vortexing (Heidolph, model Reax top) for 30 s with
100% power input, according to the methodology described by Simões
et al. (2005b). The homogenised biofilm suspensions were then used to
sequentially assess the culturability, respiratoryactivity, total andmatrix
proteins and polysaccharides content, total cell counts and biomass.

2.4. Culturability assessment

Biofilm suspensions were diluted to a proper bacterial concentra-
tion in order to have formed 30–300 colony forming units (CFU) per
plate. A volume of 30 µl of biofilm suspensions was transferred onto
plates of solid (13 g/l agar, Merck, VWR, Portugal) growth medium
(5 g/l glucose, 1.25 g/l yeast extract and 2.5 g/l peptone as nutrients).
Colony enumeration was carried out after 48 h at 27 °C. Bacteria from
dual biofilms were also streaked onto skim milk agar (Merck) in order
to estimate the proportion of protease negative (D3-348) and positive
bacteria (D3-350). Final values were assessed as CFU/cm2.



Fig. 1. Schematic representation of the experimental apparatus system used to perform biofilm formation on the flow cell reactors.
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2.5. Respiratory activity assessment

Theassayswereperformed in amodel 53YellowSprings Instruments
(USA) biological oxygenmonitor (BOM) as described previously (Simões
et al., 2005c). The samples were placed in the temperature-controlled
vessel of the BOM (T=27 °C±1 °C). Each vessel contains a dissolved
oxygen (DO) probe connected to a DOmeter. Once inside the vessel, the
sampleswere aerated for 30min to ensure air saturation ([O2]=9.2mg/l,
27 °C; 1 atm). The vessel was closed and the decrease of oxygen
concentration was monitored over time. The initial linear decrease
observed corresponds to the endogenous respiration rate. To determine
the oxygen uptake due to substrate oxidation, 50 µl of a glucose solution
(100 mg/l) was inserted into each vessel. The slope of the initial linear
decrease in the DO concentration, after glucose injection, corresponded
to the total respiration rate (Simões et al., 2005c). Thedifferencebetween
the two respiration rates gave the oxygen uptake rate due to the glucose
oxidation and was expressed as mg O2/gbiofilm min.

2.6. Biomass quantification

The dry mass of the biofilm accumulated on the slides, after the
respiratoryactivity determination,was assessed by the determinationof
the total volatile solids (TVS) of the homogenised biofilm suspensions,
according to Standard Methods (American Public Health Association
[APHA], American Water Works Association [AWWA], Water Pollution
Control Federation [WPCF],1989),methodnumber 2540A–D. According
to this methodology, the TVS assessed at 550±5 °C in a furnace (Lenton
thermal designs, UK) for 2 h is equivalent to the amount of biological
mass. The biofilmmass accumulatedwas expressed inmg of dry biofilm
per cm2 of surface area of the slide (mgbiofilm/cm2).

2.7. Extraction of extracellular polymeric substances

Extraction of the extracellular polymeric substances (EPS) of the
biofilmswas carriedout usingDowex resin (50× 8,NA+ form, 20–50mesh,
Fluka-Chemika, Switzerland), according to the methods of Frølund et al.
(1996). The biofilm suspension coming from the respiratory activity
assessment was diluted with a volume of 10 ml of buffer (2 mM Na3PO4,
2 mM NaH2PO4, 9 mM NaCl and 1 mM KCl, pH 7), resulting in a 20 ml
biofilm suspension. Additionally, 50 g of Dowex resin per g of volatile
solidswereadded to thebiofilmsand theextraction tookplaceat400 rpm,
using amagnetic stirrer, for 4 hat 4 °C. The extracellular componentswere
separated from the cells via centrifugation (3777 g, 5 min).

2.8. Total cell counts

The cells separated through centrifugation from the EPS (present in
the supernatant), after the extraction process, were stained with 4′,6-
diamidino-2-phenylindole — DAPI (Sigma, Portugal), a DNA binding
stain, as described by Saby et al. (1997). The cellular pellet separated
from the extracellular products was diluted to an adequate concen-
tration (in order to have 30–250 cells per microscopic field), being
thereafter microfiltrated through a Nucleopore® (Whatman, UK) black
polycarbonate membrane (pore size 0.22 µm), stained with 400 µl of
DAPI at 0.5 µg/ml and left in the dark for 5 min.

A Zeiss (AXIOSKOP, Germany) microscope fitted with fluorescence
illuminationwith a 100× oil immersion fluorescence objectivewas used
to visualise the cells. The optical filter combination for optimal viewing
of stained preparations consisted of a 359 nm excitation filter in
combination with a 461 nm emission filter. The cell observations were
recorded as micrographs using a microscope camera (AxioCam HRC,
Zeiss) and a program path (AxioVision, Zeiss) involving image acquisi-
tion andprocessing. A programpath (Scan Pro 5, Sigma) involving object
measurement and data outputwas used to quantify the number of cells.

The mean number of cells was determined from counts of a
minimum of 20 microscopic fields, for each sample membrane. Final
values were assessed as cells/cm2.

2.9. Proteins and polysaccharides

Previous studies (Jahn et al., 1999; Pereira and Vieira, 2001) have
shown that the EPS of biofilms formed by the Pseudomonas genera is
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mainly composed of proteins in addition to the polysaccharides content.
Biofilm proteins were determined by the Protein Assay kit No. P 5656
provided by Sigma, using bovine serum albumin as the standard. The
procedure is essentially the Lowry method (Lowry et al., 1951) as
modified by Peterson (1979). The polysaccharides were determined by
thephenol–sulphuric acidmethodofDubois et al. (1956)with glucose as
standard. The final values were assessed as mass of proteins/poly-
saccharides per biofilm dry mass.

2.10. Biofilm mechanical stability

The mechanical stability of the biofilms was assessed by means of
determining the wet biomass loss due to the exposure of biofilms to
increasing shear stress forces expressed asnumber Reynolds of agitation
(N′ReA) in a rotating device system (Fig. 2) as described elsewhere
(Azeredo and Oliveira, 2000; Simões et al., 2005b). Biofilmswere grown
on ASI 316 stainless steel cylinders, with a surface area of 34.6 cm2

(diameter=2.2 cm; length=5 cm), inserted in a 3.5 l Perspex reactor and
rotating (rotating device— Heidolph Type RZR1, Germany) at a N′ReA of
2400. Three stainless steel cylinderswere used in every experiment. The
3.5 l reactor was continuously fed (1.7 l/h) with sterile diluted medium
and P. fluorescens suspended culture in the exponential phase of growth,
as described for the flow cell reactor system. Concerning the formation
of dual strain biofilms, the same approach was followed as for the flow
cell reactors (two independent inocula chemostats and diluted nutrient
medium at a flow rate two times higher). After 7 days of biofilm
formation, the cylinders plus biofilm were carefully removed from the
3.5 l reactor and the liquid and residues of biofilm on the top and on the
bottom of the cylinders was removed using a stainless steel scraper and
absorbent paper. This procedurewas also applied after each shear stress
exposure. Only the biofilm wet mass on the lateral area of the cylinder
was considered for mechanical stability assessment. Under those
conditions, the biofilms formed by the several strains had similar wet
mass (20.8±0.90 mg/cm2) and water content (97.1±0.77%) (Simões,
2005). This process was performed invariably during 30 s at 27 °C.
Afterwards, the biofilmswereweighed and immersed in 170ml Perspex
vessels (diameter=4.4 cm; length=12 cm) filled with 0.02M phosphate
buffer (pH 7). Afterwards, the biofilms were consecutively subjected to
serial shear stress forces corresponding to N′ReA of 4000, 8100, 12100,
16100, for a period of 30 s each. The wet weight of the cylinders plus
biofilm attached was determined before and after each N′ReA exposure.
Fresh phosphate buffer was inserted in the 170 ml vessels after each
exposure. The experiments were repeated at three different occasions
for every scenario tested.

Thewetmass of thebiofilm thatwas removed fromthe surface areaof
each cylinder, after eachN′ReA exposure, was expressed as percentage of
biofilm removal, and the amount of biofilm that remained adhered after
Fig. 2. Schematic representation of the experimental system used to perform biofilm f
submission to the complete series of N′ReA was expressed as percentage
of biofilmwet mass remaining, according to the following equations:

Biofilm remaining kð Þ ¼ X16100−Xcð Þ= Xbiofilm− Xcð Þ � 100 ð1Þ

Biofilm removali kð Þ ¼ Xbiofilm− Xið Þ= Xbiofilm− Xcð Þ � 100 ð2Þ

Xbiofilm wetmass of the biofilm plus cylinder before submission to the
series of N′ReA.

Xc wet mass of the cylinder.
i N′ReA, i.e., 4000, 8100, 12100 and 16100.
Xi wetmass of thebiofilmplus cylinder after submission to aN′ReA

of 4000, 8100, 12100 and 16100.

2.11. Statistical analysis

The data were analysed using the statistical program SPSS version
14.0 (Statistical Package for the Social Sciences). The mean and
standard deviation within samples were calculated for all cases.
Because low sample numbers contributed to uneven variation,
nonparametric Kruskal–Wallis test was used. Statistical calculations
were based on confidence level equal or higher than 95%.

3. Results

3.1. Characterization of flow-generated biofilms — respiratory activity,
biomass, total and culturable cells

Turbulent flow-generated biofilms were more active than those
formed under laminar flow (Fig. 3a), independently on the strain used
(P=0.018). The respiratory activity of the tested biofilms was similar
when developed under the same hydrodynamic conditions.

Biofilm dry mass results (Fig. 3b) show that those formed under
turbulentflowhad clearlymoremass per adhesion surface area than the
laminar counterparts (P=0.029). A statistical analysis of the mass of all
turbulent flow-generated biofilms revealed their similarity (PN0.05).
Laminar flow-generated biofilms also had similar biofilm mass.

Turbulent flow-generated biofilms had a higher number of total
(Fig. 3c) and culturable (Fig. 3d) cells than those formed under laminar
flow. This result is proved by a statistical significance value smaller than
0.05 for the four scenarios studied. The type strain formed both turbulent
and laminar biofilms with the highest number of total (P=0.002 —

turbulent; P=0.013— laminar) and culturable cells (P=0.008— turbulent;
P=0.021 — laminar) comparatively to those formed by the other strains.
The comparison between Fig. 3c and d shows that most biofilm cells are
ormation on the bioreactor rotating system used for mechanical stability studies.



Fig. 4. Total and matrix proteins (a) and polysaccharides (b) content per gram of biofilm
of the several 7 days old P. fluorescens single and dual turbulent (total—□; matrix— )
and laminar (total — ; matrix — ■) flow-generated biofilms formed on stainless steel
surfaces using flow cell reactors. Each symbol indicates the mean±SD of at least three
independent experiments.

Fig. 3. Biofilm respiratory activity (a), dry mass (b), total (c) and culturable (d) cells of
the several 7 days old P. fluorescens single and dual turbulent (□) and laminar ( ) flow-
generated biofilms formed on stainless steel surfaces using flow cell reactors. Each
symbol indicates the mean±SD of at least three independent experiments.

Fig. 5. Biofilm removal, expressed aspercentage ofwetmass removed, due to the exposure
to increasing N′ReA. Biofilms were developed for 7 days on stainless steel cylindrical
surfaces at a constant N′ReA of 2400 using the bioreactor rotating system. □ — Type; —

D3-348; — D3-350; ■ — dual. Each symbol indicates the mean±SD of at least three
independent experiments.
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not culturable (P=0.003). The decreased ability of biofilm cells to grow in
solid medium was independent on the hydrodynamic conditions under
which biofilms were developed and on strain variability. A difference of
1.21±0.39 log CFU/cm2 (91.7±5.99% of the total population) between
culturable and total cellswas detected for the tested biofilms. The analysis
of dual strain biofilm community, in terms of relative abundance through
the assessment of CFU on skim milk agar, revealed an equal colonization
by both strains. Turbulent flow-generated biofilms were colonized by log
values of 7.61±0.43 CFU/cm2 (D3-348) and 7.67±0.70 CFU/cm2 (D3-350),
while laminar flow-generated biofilms had log values of 6.35±0.21 CFU/
cm2 and 6.29±0.35 CFU/cm2 of D3-348 and D3-350 strains respectively.
3.2. Characterization of flow-generated biofilms — organic constituents

Analysis of biofilm organic constituents shows that turbulent flow-
generated biofilms had a higher amount of total proteins per gram of
biofilm (Fig. 4a) than the laminar counterparts (P=0.033). The tested
laminar flow-generated biofilms were composed by similar total
proteins amount. Turbulent biofilms formed by the type strain had a
significant higher amount of total proteins than single and dual
biofilms formed by the other strains (P=0.008). These single and dual
biofilms had equivalent total proteins content per gram of biofilm.

Matrix proteins content was comparable for turbulent and laminar
flow-generated biofilms formed by the distinct strains/associations.
Analysing the proportion of matrix proteins, it represents about 9%
(turbulent) and 30% (laminar) of the total proteins for biofilms formed
by the type strain, while the single and dual biofilms formed by the
D3-348 and D3-350 strains had about 20% (turbulent), 30% (laminar—



Fig. 6. Biofilm remaining, expressed as percentage ofwetmass remaining adhered, for the
single anddual strain biofilms posterior to the exposure to the total series ofN′ReA. Biofilms
were developed for 7 days on stainless steel cylindrical surfaces at a constantN′ReA of 2400
using the bioreactor rotating system. Each symbol indicates themean±SD of at least three
independent experiments.
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D3-350 single biofilms, and dual biofilms) and 40% (laminar— D3-348
single biofilms) of the total proteins.

Biofilms formed by the type strain had a significant higher amount of
total polysaccharides per gram of biofilm (Fig. 4b) than those formed by
the other strains (P=0.013 — turbulent; P=0.008— laminar). Moreover,
type strain laminarflow-generated biofilmshad a higher content of total
polysaccharides than the turbulent counterparts (P=0.033). Single and
dual biofilms formed by the D3-348 and D3-350 strains formed under
turbulent and laminar flow were composed by comparable amounts of
total polysaccharides.

Matrix polysaccharides content (Fig. 4b) were different when
comparing turbulent and laminar flow-generated biofilms (P=0.037).
Biofilms formed by the type strain exhibited a higher amount ofmatrix
polysaccharides of both turbulent (P=0.014) and laminar (P=0.005)
flow-generated biofilms, than those formed by theD3-348 andD3-350
strains. These strains produced single and dual biofilms, under both
hydrodynamic conditions, with similar matrix polysaccharides con-
tent. The percentage of matrix polysaccharides assessment in the total
polysaccharides shows that turbulent flow-generated single and dual
biofilms formed by the D3-348 and D3-350 strains were composed by
approximately 50% of the total polysaccharides, while those formed by
the type strain had about 66% of the total polysaccharides as matrix
constituents. The matrix of the laminar flow-generated biofilms was
composed by 85% (type and D3-348 strain single biofilms) and 70%
(D3-350 single biofilms, anddual biofilms) of the total polysaccharides.

3.3. Biofilm mechanical stability

The exposure of biofilms to incrementingN′ReA caused removal. This
process was dependent on the N′ReA to which the four biofilms were
exposed (Fig. 5). The high percentage of removal occurred with the
application of N′ReA of 4000 (dual biofilms), 8100 (type and D3-348),
and 12100 (D3-350). Comparing wet biomass removal for the tested
biofilms and for the same N′ReA, differences were found for N′ReA of
4000 (P=0.024) and 12100 (P=0.009).

Fig. 6 shows that biofilm exposure to increasing N′ReA did not give
rise to total biofilm removal, as only about 76% (type and D3-348), 88%
(D3-350) and 90% (dual) of biofilm wet mass were detached from the
cylinders, demonstrating the failure of the mechanical treatment to
eradicate biofilms and that those formedby both type andD3-348 strain
presented higher mechanical stability than those formed by D3-350
strain and D3-348/D3-350 co-culture.

4. Discussion

The study of the parameters influencing biofilm formation and
behavior represents a valuable tool for biofilm basic understanding and
control (Xavier et al., 2005). This study shows that P. fluorescens
turbulent flow-generated biofilms are physiologically distinct from
those formed under laminar flow. This fact is evident for every tested
strain grown as monoculture or co-culture. Turbulent flow-generated
biofilms were more active, had more mass per cm2, higher number of
total and culturable cells, higher amount of total proteins per gram of
biofilm, similarmatrix proteins and identical (single and dual biofilms of
D3-348 and D3-350 strains) or smaller (type strain biofilm) total and
matrix polysaccharides content per gram of biofilm in comparison to
laminarflow-generated biofilms. Ahigher physiological heterogeneity is
found for biofilms formed under turbulent conditions. This is evident
when comparing the standard deviations calculated from biofilm mass,
respiratory activity and culturability data. Biofilms are recognized as
physiologically heterogenic communities (Stewart and Franklin, 2008),
and based on our results the turbulent flow seems to accentuate this
phenomenon.Moreover, the distinctmetabolic activity of turbulent and
laminar flow-generated biofilms is arguably related with the different
passive transport of cells, oxygen and nutrients through the biofilm,
deriving from the flow conditions (Stoodley et al., 1997; 1999; Pereira
et al., 2002). In fact, during enhanced flowand turbulence, nutrients and
oxygen could be transported into the biofilmmicroenvironment and be
responsible for the majority of the altered bacterial metabolism
(Stoodley et al., 1997). Consequently, the higher oxygen rate and sub-
strate transport from the fluid to the biofilm, should favour microbial
metabolism and cell replication. Additionally, studies analysing the
electron transport system shown that high shear stress can stimulate
biofilm catabolic activity (Liu and Tay, 2001).

The numbers of total and culturable biofilm cells were not
comparable for the tested biofilms, which is probably related to the
limitations of the plate count method. In a previous study (Simões
et al., 2007b), it was found that, using viability stains and epifluo-
rescence microscopy, turbulent and laminar flow-generated biofilms
formed by the type strain had more than 99.5% of the population in
viable state. Similar results were also found for the other tested strains
(Simões, 2005). In fact, it has long been recognized that the use of
culture-based enumeration techniques may significantly underesti-
mate the numbers of viable cells. Several reasons may account for this
difference: (i) the presence of starved or injured cells or potentially
viable but nonculturable cells (VBNC) that are not able to initiate cell
division at a sufficient rate to form colonies; (ii) inadequate culture
conditions; (iii) aggregation of bacteria that can lead to the formation
of one colony from more than one cell, thereby underestimating the
total number of cells (Banning et al., 2002).

Biofilm phenotypic characterization clearly shows that all the
strains formed laminar flow-generated biofilmswith a relative (matrix
concentration/total concentration) higher content of matrix proteins
and polysaccharides per gram of biofilm than the turbulent counter-
parts. These differences can account for the different structure of
P. fluorescens type strain turbulent and laminar flow-generated bio-
films reported by Pereira et al. (2002). These authors found that
laminar flow-generated biofilms had a higher thickness (28±12 µm)
than the turbulent counterparts (22±8 µm), although the cellular
density and mass of these biofilms is significantly different, as verified
in the present study. In fact, the hydrodynamic conditions underwhich
the biofilms are formed can cause other phenotypic differences. As
example, type strain turbulent flow-generated biofilm cells had equi-
valent spherical radius, determined through cell lengths and widths
measurements (Walker et al., 2005), of 0.201±0.01 µm comparatively
to 0.408±0.03 µm of laminar flow-generated biofilm cells (Simões
et al., 2007b). Moreover, turbulent and laminar flow-generated biofilm
cells, mainly those formed by the type strain, were in a considerable
higher amount than those found in industrial environments (Sharma
andAnand, 2002). The high biofilm cell counts reported are apparently
related with the characteristics of the experimental system used. In
fact, the bioreactor system and the operating conditions used were
optimized to improve the potential of bacteria to form biofilms and to
mimic industrial flow processes (Azeredo and Oliveira, 2000; Pereira
et al., 2002).
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Dual strain biofilms failed to show remarkable differentiation as a
consequence of potential interactions promoted by the D3-348 and
D3-350 strains. The physiological characteristics of dual biofilms
seem to represent an average of the values of each single strain biofilm,
evidencing neutral interactions between D3-348 and D3-350 strains.
This is reinforced by the similar CFU counts. However, more data is
required to confirm this degree of interaction. Previous studies using
Pseudomonas spp. in dual species biofilms (Cowan et al., 2000) demon-
strated the potential for commensal interactions when in the presence
of organic compounds. Other apparent protective effects caused by
microorganisms association have been mentioned (Leriche et al., 2002;
Lindsay et al., 2002; Whiteley et al., 2002). According to Camper et al.
(1996), the initial growth rate appeared to have a significant impact on
microbial ability to compete in a dual population biofilm. In fact, in this
study, the tested strains, as single or co-cultured, had similar growth
rates (Simões, 2005) explaining the co-existence and the apparent
neutral interactions found within the dual strain biofilms.

The mechanical stability of biofilms, defined as their responsive
behavior to mechanical stress conditions, revealed that the exposure of
biofilms to shear stress forces higher than the one under which the
biofilm was formed caused biomass removal. Nevertheless, complete
biofilm removal was not observed. According to some authors (Stoodley
et al., 1999; Körstgens et al., 2001), the biofilm matrix develops an
inherent internal tension, which is in equilibrium with the shear stress
under which the biofilm was formed, and the removal of a well-
established biofilm requires the overcome of the forces that keep the
matrix together as well as the forces that bound the biofilm to the
adhesion surface. Those latter reports support the data obtained in this
study, as for the several biofilms high removal was achieved with the
sudden increase in theN′ReA of 8100 (type and D3-348),12100 (D3-350)
and 4000 (dual biofilms). Mechanical stability experiments also
demonstrated the higher resistance to removal of single biofilms formed
by the type andD3-348 strainswhen comparingwith the other biofilms.
Concerning biofilm remaining of D3-350 single and the dual strain
biofilms, the similarity observed could be due to the prevalence of this
strain in the inner layers of the dual biofilms. In fact, biofilm removal,
using the rotating device system, is known to be processed in layers
(Azeredo andOliveira, 2000). If D3-350 strainwasnear the stainless steel
surface, removal was then facilitated. The mechanical stability results
also reinforces that the association of the D3-348 and D3-350 strains in
dual biofilms formed a functional system where both strains were
maintainedwith an apparent lack of interaction, not generating biofilms
with a relevant distinct mechanical stability from the single ones.

Biofilms formed by the type strain represent theworst case scenario,
in a biofilm control context by conventional chemical and mechanical
treatments. This is due to themore complexmatrix, higher cell numbers
and advantageous mechanical stability, comparatively to the other
tested biofilms. The barrier protection provided by the biofilm EPS
matrix increase the resistance and resilience of biofilm-resident bacteria
to environmental stress conditions, while the higher cellular density can
providea decreased ratio of antimicrobial agent concentrationper target
cell (Stewart et al., 2000; Pereira and Vieira, 2001; Simões et al., 2003;
2006). In previous studies (Simões et al., 2003, 2005a), it was
demonstrated that the biofilm physiology, derived from theflow regime
under which the biofilms were developed, had a strong impact on their
control by the action of disinfectants. Biofilms formed under turbulent
flow were more resistant than those formed under laminar conditions.

The overall results allow to conclude that hydrodynamic conditions
influence markedly the phenotype of P. fluorescens biofilms. Turbulent
flow-generated biofilms were more active, had more mass per surface
area, a higher number of total and culturable cells and total proteins
content per gramof biofilm, similarmatrix proteins and identical (single
and dual biofilms formed by D3-348 and D3-350 strains) or smaller
(type strain biofilms) total and matrix polysaccharides content than
laminar biofilms. D3-348 and D3-350 strains co-existed in dual biofilms
with apparent neutral interactions.Mechanical stability assays disclosed
that biofilms formed by both type and D3-348 strains show a higher
resistance to removal when exposed to mechanical stress. As a
consequence, the type strain represents, apparently, the worst case
(meaning the toughest to remove and hence, the most well adapted to
the cultivation conditions) in a biofilm control process when comparing
with the other single and dual strain biofilms. This fact addresses a
timely topic, as there is increasing awareness that domesticated
laboratorial strains are not adequate models for biofilm formation and
control (Fux et al., 2005). However, the experimental conditions used in
this study were not intended to reproduce the industrial settings from
which the D3-348 and D3-350 strainswere collected. Further evidences
are required to demonstrate that the domesticated type strain, when in
the actual industrial setting, would be able to perform better than the
environmental strain present there.
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